martes, 28 de septiembre de 2010

DEMOSTRACION

Escribamos la primera ley de la termodinámica con un criterio de signos termodinámico conveniente:

w + q = \Delta h + \Delta \frac{V^2}{2} + g \Delta z

Recordando la definición de la entalpía h = u + Pv, donde u es la energía interna y v se conoce como volumen específico v = 1 / ρ. Podemos escribir:

w + q = \Delta u + \Delta \frac{P}{\rho} + \Delta \frac{V^2}{2} + g \Delta z

que por la suposiciones declaradas más arriba se puede reescribir como:

w + q = \frac{P_2}{\rho} - \frac{P_1}{\rho} + \frac{{V_2}^2}{2} - \frac{{V_1}^2}{2} + g (z_2 - z_1)

dividamos todo entre el término de la aceleración de gravedad

\frac{w}{g} + \frac{q}{g} = \frac{P_2}{\gamma} - \frac{P_1}{\gamma} + \frac{{V_2}^2}{2 g} - \frac{{V_1}^2}{2 g} + z_2 - z_1

Los términos del lado izquierdo de la igualdad son relativos a los flujos de energía a través del volumen de control considerado, es decir, son las entradas y salidas de energía del fluido de trabajo en formas de trabajo (w) y calor (q). El término relativo al trabajo w / g consideraremos que entra al sistema, lo llamaremos h y tiene unidades de longitud, al igual que q / g, que llamaremos hf quién sale del sistema, ya que consideraremos que sólo se intercambia calor por vía de la fricción entre el fluido de trabajo y las paredes del conducto que lo contiene. Así la ecuación nos queda:

h -h_f= \frac{P_2}{\gamma} - \frac{P_1}{\gamma} + \frac{{V_2}^2}{2 g} - \frac{{V_1}^2}{2 g} + z_2 - z_1

o como la escribimos originalmente:

\frac{{V_1}^2}{2 g}+\frac{P_1}{\gamma}+z_1 + h = h_f + \frac{{V_2}^2}{2 g}+\frac{P_2}{\gamma}+z_2

Así, podemos observar que el principio de bernoulli es una consecuencia directa de la primera ley de la termodinámica, o si se quiere, otra forma de esta ley. En la primera ecuación presentada en este artículo el volumen de control se había reducido a tan solo una línea de corriente sobre la cual no habían intercambios de energía con el resto del sistema, de aquí la suposición de que el fluido debería ser ideal, es decir, sin viscosidad ni fricción interna, ya que no existe un término hf entre las distintas líneas de corriente.

No hay comentarios:

Publicar un comentario